科学家成功合成铹的第14个同位素******
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。
近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。
此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。
不断进行探索,再次合成铹同位素
铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。
质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。
103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。
截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。
目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。
通过熔合反应,形成新的原子核
铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。
“仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。
在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。
“如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
拓展新的领域,推动超重核理论研究
由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。
此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。
研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。
“此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌)
吟唱架起情谊之桥——访两岸联吟发起人、台湾教师孙永忠******
中新社北京1月9日电 题:吟唱架起情谊之桥——访两岸联吟发起人、台湾教师孙永忠
作者 朱贺
“尽管相聚短暂,但学生间建立的情谊比想象中深厚。庆幸他们能在学生时代结识跨越海峡的朋友,这是一种美好。”
近日,台湾辅仁大学中文系教师孙永忠接受中新社记者采访,回忆十余年来两岸大学生通过古典诗词联吟活动缔结的深厚情谊。作为两岸联吟活动发起人,年逾六旬的孙永忠说,诗友们都期待早日恢复面对面交流。
幼时,孙永忠常听父亲吟唱念诗,觉得这种吟哦(放声朗读)的方式有些怪;大学时期,曾在北京求学的诗学老师用“北平腔”吟唱,“有京韵大鼓的感觉”。成为大学教师后,孙永忠发现学生们念诗时少了一种情韵,“当中需要‘细嚼慢咽’的东西不见了”。
“大家习惯用文字书写,却缺少了许多想象力。问起为何‘独坐幽篁里’,而不是坐在别的地方?李白吟出‘床前明月光’时,身处室内还是室外?学生很难给出答案。”孙永忠认为,帮助学生以吟唱方式依照古调或新曲把诗句唱出来,将节奏放慢,留下时间来品味、想象,“穿越”回到那个“当时”,或能更接近诗人的真实情感,感知中华古典诗词的本味。
1994年,孙永忠把吟唱带进课堂,并在辅仁大学的东篱诗社中刮起“旋风”。2006年来大陆参加学术交流,孙永忠发现在台湾高校已蔚然成风的吟唱形式,在大陆仍然鲜见。第二年,孙永忠带领宝岛青年在北京师范大学等高校进行吟唱展演,收获了出乎意料的反响。当青年们和着鼓乐吟唱诗经《小雅·蓼莪》,台下师生被深深打动。
与海峡对岸的东篱诗社遥相呼应,南山、悠然、采菊等诗社在大陆多地高校成立。北京师范大学的师生形容孙永忠“带了把火来”,孙永忠则认为一切只是水到渠成。
2008年,以“古韵新妍”为名的两岸青年古典诗词联吟活动应运而生,40位大陆师生赴台参加首届活动。活动在两岸高校间轮流举办,至今已至十三届,成为两岸学子一年一度的诗词盛宴。
联吟亦成为架起两岸情谊的桥梁。孙永忠谈道,有大陆学生后来结婚,台湾伙伴专程搭飞机送上祝福;有台生来大陆发展或旅游观光,会专程拜访当地诗友。
学子的生活也被吟唱所影响。孙永忠说,有学生当了教师,一样把吟唱带进课堂;有学生在困惑时唱起苏轼的“谁怕?一蓑烟雨任平生”……“每人心中都能有一两首诗词,在得意或失意之时吟哦两句,排遣一下”,在孙永忠看来,这正是吟唱的意义。
十余年来,孙永忠常为大陆各地诗社授课,并留下录音资料、曲谱及“服务电话”,诗社间也建立起友谊。他期待各家诗社有自己的钻研、尝试和突破,形成风格。
2019年第十三届联吟活动在徐州举行后,实体交流中断,但孙永忠始终与各诗社保持着线上往来。一次为江苏师范大学悠然诗社解惑,燃起了孙永忠再为两岸联吟“添一把火”的愿望;在两岸五家诗社的推动下,“古韵新妍2023冬季联吟展演”近日于大陆平台直播,在青年诗友间掀起新的涟漪。
早已将吟唱视作一生志业,孙永忠对在不久后恢复线下两岸联吟抱有很大期待。他在社交媒体中写下:吟唱是一辈子的美好,每当诗乐悠扬,我们的青春情怀便再一次的涤荡;诗词蕴有的真善美,可长葆生命的清新热忱。(完)
(文图:赵筱尘 巫邓炎)